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By using the technique of multiple scaling a theory of gas-bubble oscillations in a 
liquid is developed. Collections of bubbles of arbitrary shape under the action of 
surface tension, buoyancy and solid surfaces are considered. In  the absence of thermal 
conduction in the bubbles and compressibility of the liquid a conserved ‘action’ is 
defined for each of the modes of oscillation. The equation governing the decay of the 
action with time is found by carrying the analysis to second order. The geometrical 
configuration of the bubbles, in which the oscillations take place, evolves in time under 
convection by an underlying ‘basic’ flow for which the governing equations are 
derived. The bubble pulsations influence the development of the basic motion. Later 
in the work a source of gas bubbles is brought in and its effects on the oscillations 
discussed. The results of the interaction of pulsating bubbles with the liquid surface 
are also briefly considered. The determination of the amplitude of oscillations induced 
by the splitting up of bubbles and by the generation of bubbles from the gas source is 
described. Finally, several applications of the theory to specific problems are given. 

1. Introduction 
The object of this paper is to show how a theory of gas bubbles in a liquid can be 

developed using singular perturbation theory. We use formally the popular techniques 
of multiple scaling and averaging to separate the rapid oscillations of the bubbles 
from the slower ‘basic ’ motion which underlies them. 

The oscillations themselves are described by a certain eigenvalue problem, whose 
solution gives the normal modes and corresponding frequencies of oscillation. The 
decay of the bubble pulsations under the effect of thermal conduction in the interior 
of the bubbles and compressibility of the liquid is described by an amplitude equation 
for each of the modes. 

The basic motion of the liquid is modelled by an incompressible flow with certain 
boundary conditions on the bubble surfaces. In general, it is found that the oscillations 
affect the basic flow, but since the equations governing the latter are intractable, we 
place the emphasis on a description of the bubble oscillations for a given basic motion. 

If a bubble breaks into two, under the action of the underlying motion, it is found 
that bubble oscillations are generated. We provide a method for determining the 
amplitude of the resulting modes of pulsation. 

In  the following sections we present the theory for a collection of bubbles in a liquid. 
We allow for the presence of solid surfaces, surface tension and buoyancy effects. 

t Present address: Topexpress Limited, 1 Portugal Place, Cambridge CB5 8AF. 
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Later on, we will also introduce a mechanism for production of the bubbles and will 
briefly examine the effects of introducing an upper surface to the liquid. 

Much previous work on bubble oscillations has concentrated on single bubbles, or 
on the averaged properties of a bubbly medium. Here we refer the reader to the papers 
by Foldy (1945), Whitfield & Howe (1976) and the review articles of Fitzpatrick & 
Strasberg (1957), van Wijngaarden (1972) and Plesset & Prosperetti (1977). The 
present study is concerned with the collective pulsations of finite groups of bubbles, 
such as might be found near a source of gas in a liquid or after the break up of a large 
bubble into smaller ones. It should be emphasised that our goal is not to deal with the 
continuum limit of waves in a bubbly medium, a limit which has already been ex- 
tensively studied elsewhere. 

Finally, a survey of multiple-scaling techniques can be found in Nayfeh (1973). 

2. Basic equations 
We neglect the viscosity of the gas and liquid, and we assume the former to be 

polytropic and the latter to be almost incompressible. Damping of the bubble oscil- 
lations due to thermal conduction, viscosity and compressibility of the liquid (radiative 
damping) was studied by Devin (1959), amongst others. He concludes that viscous 
damping is unimportant unless the bubbles are very small; however, radiative damp- 
ing becomes significant when the bubble size is above about 1 mm for air bubbles in 
water at  one atmosphere. We will therefore neglect viscosity throughout, although it 
should be borne in mind that it may affect the (slower) basic motion. At this stage we 
will take the liquid to be incompressible; later on we will see that slight compressibility 
can be introduced to account for radiative damping of the bubble pulsations. However, 
we will always take the group of bubbles to be small compared to the wavelength 
associated with the bubble oscillations. This is not a serious restriction unless the 
number of bubbles is very large, because each bubble is small on a wavelength scale. 

Each bubble is labelled by a positive integer j = 1, .  . . , iV and the interior of the 
biibble j will be denoted by Vi and its surface by J i .  That part of Ji which is in contact 
with the liquid is Si, while to allow for the possibility that the bubble has an interface 
with a solid boundary we write this part of the bubble surface as 27; the latter can be 
empty, in the sense of set theory, in which case the bubble does not touch the solid. 
We will also use the above symbols to denote the volume or surface area of the 
corresponding regions. Finally, we write V for the region occupied by the liquid 
and S for the liquid-solid interface. 

We take Sf to have the form 

fi(x,t) = 0, (2.1) 

so that we have the kinematic relations 

where $ and @ represent the velocity potentials of the liquid and gas respectively, 
so that 

u = V$, uf = V @  (2.4) 
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are the corresponding velocities. We assume the liquid flow to be steady at infinity, 
so that the pressure of the liquid takes the Bernoulli form 

P = Pm - ~t (S lV# 1 a + a$/at) - ~ t  YY, (2.5) 

where pl is the density of the liquid and y a vertical co-ordinate. 
We take as non-dimensional variables 

where T is the surface tension of the liquid, R the gas constant, 8, the ambient tem- 
perature and a is a typical bubble size, not to be confused with the same symbol which 
is used for the action later in this article. The time scale (pl a2/pm)4 is based on a typical 
period of oscillation of the bubbles while the scaling (T/apl)* for the velocity was 
chosen to make the pressure variations of the basic flow of order T / a .  This condition 
is necessary, but not always sufficient, to keep the bubbles stable, otherwise they 
will break up into smaller ones for which the condition is satisfied. 

The equations governing the motion are the following: 

V2' = 0,  p = ---- " 1eIVq512-Ay, (2.61, (2.7) 

ui = V@, S(i+cpj)  -+eu i .Vu i+Ae ,  (2.8)' (2.9) 

(2.10) 

(2.11) 

at 2 
in the liquid, and 

(a; 
p i  = pi + 8i +,pi@, 

api - + + u i . V p i + ( l + e p i ) V . u i  = 0,  
at 

in the gas. In  these equations, and in the remainder of this paper, we have dropped 
the prime on each variable and have introduced the parameters 

where h is the coefficient of heat conduction of the gas. 
The kinematic conditions (2.2) and (2.3) are now 

(2.13) 

(2.14) 

afj 
at 
-+eV'.Vfi= 0, (V$-V@).Vfj= 0 on Xi. (2.15), (2.16) 
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Moreover, on the solid boundary we have 

_ -  '4- 0 on S, 
an 

- 0 on Xi. 
a p  _-  
an 

There is a pressure-jump relation across Xi of the form 

(2.17) 

(2.18) 

(2.19) 

where Ri and R'i are the principal radii of curvature of Si a t  the point in question. 
I n  principle, we should consider heat-transfer effects in the liquid and solid; these 

would provide boundary conditions on Ji  for the temperature O i .  However, because 
of the large heat capacity of both the solid and liquid compared with the gas, we can 
take the simpler condition that 

Oi = 0 on J i .  (2.20) 

A useful relation can be derived using equations (2.10)-(2.12): 

(2.21) 

where the normal derivative a/an is here, as elsewhere, taken inwards, towards the gas. 
We have neglected compressibility of the liquid in setting up these equations, this 

requires that the scaled wavenumber 

(2.22) 

where co is the sound speed in the liquid, be very small. Later in the article we will 
include the effects of liquid compressibility on the bubble oscillations. 

I n  3 we proceed to  apply multiple-scaling ideas to this problem. 

3. The perturbation procedure 
We assume that the parameters E ,  6, A and 7 are all small and, to  simplify the analysis, 

are formally of the same order. The parameters have the following meanings. 
(a)  E is a measure of bubble stiffness, that  is the pressure required to change the 

bubble's shape relative to  that required to change its volume; if it were not small then 
we would not be able to  separate volume pulsations from the general oscillation of 
the bubble surface. 

( b )  6 is the ratio of gas density to liquid density and so is generally small. 
(c) A / E  is a measure of the effectiveness of buoyancy compared to  surface tension 

forces - the bubbles would be structurally unstable if it were large and so A will be 
small provided E is. 

( d )  7 measures the effects of damping of the oscillations due to thermal conduction 
in the gas - if it is O(1) then any volume pulsations are damped out very quickly, 
while if it is large then the gas motion is almost isothermal (a problem which can be 
treated by the techniques of this paper), and damping due to thermal conduction is 
again small. Taking air bubbles in water a t  one atmosphere, all four parameters are 



Perturbation theory of gas-bubble oscillations in a liquid 49 1 

small for bubble radii between about ten microns and one centimetre - furthermore, 
each of the parameters, apart from 6, gets even smaller a t  higher ambient pressures 
and 6 remains small up  to  pressures of a few hundred atmospheres. 

The expansions all take the form 

$ = $0+41+0(4, (3.1) 

to = t ,  t ,  = st, (3.2) 

and we introduce the two time scales 

the former being the fast time scale, representing the oscillations, and the latter being 
the slow time scale, representing the basic flow. At order s1 we will write for the 
average of for the corresponding oscillation in 

Averaging, in this way, is a convenient way of eliminating secular terms in the 
expansion and, a t  the same time, separating the bubble pulsations from the basic flow. 

Substituting expansions of the form (3.1) into the governing equations, we find that 

with respect to  to and $I = $, - 

8$0 

at0 
v24, = 0,  po = - -, 

vp; = 0, = e:, 

on Xi, I (v$ho-vq5;).vf{ = 0 
Pi =Po 

_ -  ' $ 0 -  o on so, 
an 

(3.10) 

(3.11) 

(3.12) 

Here So, S{ and Z; are the zeroth-order approximations to S ,  Si and Zi respectively; 
these are independent of to by equation (3.9), which is equivalent to the fact that, in 
linear theory, boundary conditions should be imposed on the unperturbed surface. 

Using (3.5)-(3.7) we deduce that 

which, integrated over V;, yields the equation 

(3.13) 

(3.14) 

(3.15) 
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Using equations (3.4), (3.10) and (3.12) this relation becomes 

(3.16) 

From equations (3.3) and (3.11) we obtain 

v24, = 0, (3.17) 

(3.18) 

These, together with equation (3.16), govern the time development of fro. As expected, 
a t  zero order we have just the linearized problem. 

As is usual in such problems (Nayfeh & Mook 1979)' we look for normal modes of 
the form 

(3.19) $0 = W) exp ( - iW1)/4, 

and then the problem becomes 
v20 = 0, 

a@ 
- = 0 on X,, an 

Here we have written 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

for the 'frequency' of the mode in question. Let Qj be the solution of (3.20) and (3.21) 
in ?{ for which 

!2 = 8jk on st. (3.24) 
We can write 0 in the form 

Q, = zaw, (3.25) 
j 

and then the problem for @ takes the form of the system of linear equations 

for the coefficients a?. Set pi = (V$)hd and define the matrix 

Then we have 
N 

(3.26) 

(3.27) 

(3.28) 

which is now in the standard eigenvalue form, the eigenvalue being w2 and the eigen- 
vector being pi. Using Green's formula, equation (3.27) becomes 

(3.29) 
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which is obviously symmetric and positive-definite. There are therefore N real eigen- 
frequencies w,(p = 1, . . . , N ) ,  which are chosen positive, with corresponding ortho- 
normal eigenvectors b;, i.e. 

N 

j=1 
c PjP! = dpv- 

We now have the general solution for fi0 in the form 

where A ,  is the amplitude of the mode labelled by p and 

(3.30) 

(3.31) 

The eigenvalue problem (3.28) changes on the slow time scale t ,  as the geometry of 
the bubbles, represented by S;, changes under the influence of the basic flow. The 
modes represent collective oscillations of the system of bubbles and cannot, in general, 
be assigned to particular bubbles in any natural way. 

We note here that the determination of the matrix A j ,  for a given bubble geometry 
is closely related to a classical problem of electrostatic theory. If there are no solid 
boundaries present and we replace the bubbles by conductors in vmuo then the matrix 
A is simply related to the capacitance matrix for this system of conductors. Solid 
surfaces have no simple analogue, but the techniques of electrostatics can be usefully 
carried over to the study of bubble oscillations. We will give examples of this later 
in this article. 

Returning to the formal theory, equations (3.4) and (3.30) give 

(3.32) I N 

17, = 9? I: io,A, exp ( - ir&) QP , 
L l  

while equations (3.7), (3.10) and (3.13) yield 

We next define @;(x) in V$ as follows: @; satisfies 

(3.33) 

(3.34) 

(3.35) 

(3.36) 

(3.37) 

(3.38) 
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so that the solution of (3.14) for & is given by 

(3.39) I N & = 9 A,exp(-iI'Je)@$ . L1 
We now have expressions for all the oscillating quantities $o, Po,  Pi, p i ,  0; and & 

in the forms (3.30), (3.32)-(3.35) and (3.39). As regards the averaged quantities, we 
deduce that 

v2g0 = 0, po = 0 (3.40), (3.41) 

from equations (3.3) and (3.4), and that 

p i  = jji+p 0 -  - 0 7 V.O& = v2-i $0 = 0 (3.42), (3.43) 

from equations (3.5), (3.6), (3.8), (3.10) and (3.41). The equations (3.15) and (3.43) 
yield the relations 

(3.44), (3.45) 

where V! is the second term in the expansion 

of the volume of bubble j. 
We now draw attention to  the presence of a singularity of the expansions in the 

form of a thermal boundary layer in the bubble close to its surface. This occurs because 
&, as given by equation (3.35), does not in general satisfy the condition (2.20). How- 
ever, the situation is easily remedied by the introduction of a rescaling based on the 
thermal boundary-layer thickness 7. We therefore let the distance normal to the 
bubble surface be 76, so that 6 is a co-ordinate appropriate to  the boundary layer. 
Performing expansions of the form 

for each of the quantities pj, pi, @ and ui in the boundary layer and matching to  the 
region inside the bubble, we find that 

Vf = v{+sV;+o(e) (3.46) 

@ = $ i * + O ( l ) ,  (3.47) 

pi* = p&(t) = @*+pi*, ui* = 4, (3.48), (3.49) 

(3.50) 

The solution of this problem is easy; we find that 

where up = (&~,y)*( 1 - i) and we have used the condition (2.20). The other thermo- 
dynamic quantities are now given by 

Po -j* - - 2 1 0 -  -j - Bi'* 0 +pi* 0 ,  (3.52) 

(3.53) 
- = g* = -j* - Po - 0. 

I n  the $ 4  we determine the amplitude equation governing the development of the 
oscillations on the slow t'ime scale t,. 
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4. The amplitude equation 
As is shown in appendix A, by going to the next order we obtain the governing 

problem for $,, the first-order oscillating velocity potential in the liquid, having the 
form of equations (3.1G)-(3.18), but with a forcing term on the right-hand side of 
equation (3.16). This forcing term contains sum and difference frequencies correspond- 
ing to nonlinear effects and, assuming that (i) no two modes have the same frequency, 
i.e. we exclude the degenerate case; (ii) the sum and difference frequencies do not 
coincide with an eigenfrequency, i.e. we do not allow resonant nonlinear coupling of 
the oscillations; then the solubility of this problem requires that, as usual in multiple- 
scaling studies, we satisfy an orthogonality condition. This condition yields the 
amplitude equat’ion (A 25)) which describes the development of A, with the slow 
time t,. 

Writing 
A ,  = w;+a,exp (-i7,), (4.1) 

we find that aiL, which we will refer to as the action, satisfies 

and so decays under the effects of thermal conduction in the bubbles. I n  the absence 
of thermal conduction, the action of each mode is conserved; this ties in with the 
general theories of adiabatic invariants for oscillators (see Whitham 1974). 

The equation satisfied by r, is more complicated and, since variation of rF2 corre- 
sponds to a small correction to the frequency of oscillation, is of little interest. 

Up until now, the only source of damping for the oscillations has been thermal 
conduction in the bubbles. At this point we introduce compressibility of the liquid 
so that radiative damping also occurs. To this end we take K ,  the parameter defined 
by equation (2.22), to be O ( E ) .  This does not change the equations of motion to the 
order to which we have been working, instead, it modifies the boundary conditions 
on and @, a t  infinity and hence the amplitude equation is different. 

I n  order to describe the radiation field in the liquid we introduce the rescaling 

5k = Kx, (4.3) 

based on the wavelength, and the expansion 

6 = K$o (9, t )  + O W )  (4.4) 

for the oscillating velocity potential. Then $,, will satisfy the wave equation 

Writing 

we find that $,( satisfies the Helmholtz equa.tion 
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together with the matching condition to the bubble region (x = O( 1) )  and a radiation 
condition as -+a. 

In the general case, when solid surfaces of size comparable to the wavelength are 
present, we would have to solve the general diffraction problem, and this effectively 
precludes us from giving general expressions for the radiative damping. In Q 7 we will 
give examples of problems where this can be done, but for the moment we assume 
that all solid surfaces are small compared to the wavelength (i.e. compact). In this 
case we know that 

q?o-$ as r = l x ~ - + m ,  (4.8) 

where q(t) can be found from 

4nq = lim 

which becomes 

by (3.22) and (3.30). We have, therefore, 

The solution of (4.7) is thus given by 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

which represents a simple outgoing wave. 

and outer regions to show that 
We now use the Van Dyke (1975) matching principle for 4 to O(E)  in both the inner 

Thus @!) (as defined in equation (A 20)) satisfies the same problem as before, except 
that now 

The orthogonality condition then gives the equation for the action, 

(4.14) 

(4.15) 

where the additional damping term represents radiative effects. 
As we mentioned above it is not possible to give a general equation for the action 

when the solid surfaces are not compact. In particular examples it is not difficult to 
derive such an equation provided the outer (diffraction) problem can be solved; we 
will give two such examples in Q 7, but, for the above reasons, we will ignore radiative 
damping until then. 

We return to the question of degeneracy and nonlinear coupling of the modes, 
that is when 

= (JJ, (p * v), w,+w, = UA, (4.16), (4.17) c 
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respectively. A detailed analysis, which we shall not give here, shows that coupling 
of the modes may occur if either (4.16) or (4.17) is satisfied to O(e4). In  general, this 
situation will only last for a slow-time period of length O(&, and this is not long 
enough for nonlinear coupling to produce more than a slight transfer of action among 
the resonant triad (p,  v and A) .  However, if near-degeneracy occurs, it i s  possible to 
transfer action amongst the degenerate modes - a significant transfer (i.e. O( 1 ) )  may 
occur if (4.16) is satisfied to O(&). A recent study of this type of near resonant inter- 
action between modes has been given by Grimshaw & Allen (1  979). 

5. The basic flow and bubble break-up 
In  this section we proceed to find the equations and boundary conditions satisfied 

by the basic motion underlying the bubble oscillations and then examine the effects 
of the splitting of one bubble into two. 

Averaging (A 13) and (A 15) yields 

where we have used (3.4) and (A 18) in the last step. We combine (A 31, (5.1) and (5.2) 
as 

(5.3) 

We are now in a position to define the basic flow precisely. 

that is 
The basic motion is defined by the velocity potential $, in V, and is incompressible, 

V2$, = 0. (5.4) 

Equation (A 1 7 )  shows that Xa is convected with the basic flow and equation (3.44) 
says that the volume of AS'$ remains constant during the motion. These results, to- 
gether with the boundary conditions (5.3) on Si and 

- =  '$0 0 on x,, (5 .5 )  an 
are sufficient to  determine the basic motion and hence the geometry in which the 
bubble oscillations take place. 

The presence in (5.3) of the term involving 6, shows that the oscillations can affect 
the basic flow and this complicates the problem considerably. However, even without 
these terms (i.e. when the oscillations are small) the problem is intractable analytically 
and would have to be solved numerically. Note that the term in (5.3) containing 6, 
is equivalent to a body force proportional to V(lV#,Jz) which the oscillations may be 
thought of as exerting on the basic motion. This is equivalent to the so-called Bjerknes 
force (see, for example, Crum 1975). 

- 



498 J .  F .  Scott 

We pass on now to a discussion of the production of bubble oscillations by break-up 
of a bubble. If a bubble necks and then splits into two, the eigenfrequencies and modes 
of oscillation undergo a discontinuous change. Furthermore, although the total 
velocity potential $o must be continuous a t  break up, there may be a transfer between 
$o and q?o which will stimulate oscillation of the bubbles. 

To determine the amplitude of oscillation after the break-up of the bubble we use 
the facts that 

- 

so that 

where all the symbols refer to  times just after the bubble break-up. We also have 

N 
iw, A,aLexp (-iI?,Je) (5.9) 

and, since the right-hand sides of (5 .8 )  and (5.9) are continuous a t  break-up, they are 
both known from the solution beforehand. 

The equations (5.8) and (5.9) are sufficient to determine A, and hence continue the 
solution for &. The basic flow 7, is now obtained by writing 

- I 

$0 = $0 - $09 (5.10) 

and so we can continue the solution of the basic motion as well. 
It should be noted that bubble oscillations are not always produced by bubble 

break-up. Take the case of a single bubble in a liquid a t  rest a t  infinity, which is not 
oscillating before break-up and for which the division into two is symmetric about 
some plane through the bubble. I n  this case the right-hand sides of (5.8) and (5.9) 
are zero and so no oscillations are stimulated to zeroth order, although of course they 
may occur a t  higher orders. If the break-up is asymmetric then oscillahions will occur 
in general. 

6. The blowing of the bubbles 
In  this section we introduce a mechanism for supplying gas to  the system. There 

are obviously'many ways of modelling this theoretically; we choose the simple one of 
gas supply through part of the solid boundary. 

Formally, we introduce a volume of gas for which j = 0 is the bubble index. There 
is a mass flux of gas m(x)  per unit area on Co. This mass injection is assumed inde- 
pendent of time, but it will depend on which part of Co is considered. We non-dimen- 
sionalize m as 
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and then as before, we drop the prime in what follows. Writing 

r 
M = J  m d S ,  

zo 

for the total mass influx, all the equations of $ 2 remain valid (if we include j = 0 as 
one of the bubbles), apart from (2.18) which becomes 

( l+epo) -  = m  on Zo. an (6.3) 

Equation (2.21) must also be modified whenj = 0, when it takes the form 

in which the third term corresponds to  the gas injection. 
Turning now to $3,  equation (3.12) is changed to 

_ -  a"- m on z', 
an 

and equation (3.44) becomes 

The thermal boundary layer on XO is changed considerably - in place of (3.50) we have 

which has the solution (3.51) provided we write 

so that gP becomes a function of position on Xt. 
It will be noted that the eigenvalue problem for the bubble oscillations remains 

unchanged by the presence of the mass injection. There are now N + I pulsation 
modeg, one for each of the N bubbles and one for the gas-supply cavity. We will index 
the modes b y p  = 0, ..., N .  

The procedure adopted in $ 4  can be followed as before, with the result that the 
action satisfies 

where the additional term is due to the extra dissipation resulting from the presence 
of the air-supply cavity Vo. 

The basic flow can be described as in $5 with the exception that when j = 0 con- 
dition (3.44) must be replaced by (6.6) owing to the supply of gas to VO. The discussion 
of bubble break-up remains largely unchanged; condition (5.6) becomes 

(6.10) 
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and equation (5.8) must be changed correspondingly, but the basic procedure remains 
the same. 

Because gas is being supplied to  V o ,  bubbles are being produced by necking and 
breaking of So and the resulting generation of bubble oscillations is described by the 
same theory as that for division of the bubbles themselves - formally it is the same 
process. 

In practice, we would expect that the cavity which is used to generate bubbles 
would be much larger than the bubbles themselves. Of course, the above theory is 
invalid if the cavity size approaches the wavelength for the bubble frequencies in air, 
but then we would expect there to be many complications in this case. With this 
restriction in mind, we may now look at  the limit of large VO. 

When V8 is large, one of the modes of oscillation, say p = 0,  separates out from the 
rest in that it has a much lower frequency. We can identify this mode as a cavity 
resonance of Vo with the liquid. The frequency of this mode is wo = O((V,O)-*) for 
large Y8, and Q0 satisfies the eigenvalue problem consisting of Laplace's equation and 

-- '@o- o on so, 
an 

(6.11) 

(6.12) 

(6.13) 

and Q0 is constant on Si. Thus, the bubbles react incompressibly to the cavity reson- 
ance. The normalization condition implies that 

(6.14) 

a condition which will be used later on. 
The remaining modes (p = 1, . . . , N )  can be identified as bubble resonances and have 

frequencies wp = O( 1). The corresponding eigenvalue problem consists of Laplace's 
equation for 

@'/.= 0 on S,O, (6.15) 

and the boundary conditions 

(6.16) 

(6.17) 

Thus, the air-supply cavity reacts to bubble resonances by maintaining its pressure 
constant . 

Turning now to the amplitude equation when V,O is large, for the cavity resonance 
we see from (6.14) that 

a; = O[(  V8)-4], (6.18) 

and since the total mass supply rate M is to be maintained O(1) we see that (6.9) 
becomes 

(6.19) 
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and so the main cause of damping of this mode is thermal conduction in VO; the 
damping takes place over a time scale O[J:( Vt)-a] in t,. 

In  order to obtain a simplification of (6.9) when ,u p 0 we need to assume that 
J:(Vi)-z is small; this will be the case when V: is large, unless a very convoluted shape 
is chosen for Vo. Under this condition we find that 

(6.20) 

and so the presence of the air-supply cavity does not affect the damping of the bubble 
resonances, this being due to thermal conduction in the bubbles. It may be noted at 
this point that if one desired to damp bubble oscillations more quickly, then this could 
be achieved by increasing the surface area Jo of the cavity so that Jo(VO)-2 is large, 
for instance by placing baffles inside the cavity. 

We now investigate the effects of introducing a free surface into the problem. By a 
free surface, we mean a gas-liquid interface Sw which occupies a finite range in the 
co-ordinate y and is not closed. This could, for instance, be the surface of a tank of 
water in which the bubbles are situated. The volume of gas which is in contact with 
S" will be denoted by Vw.  

The preceding analysis is not greatly changed by this new component of the model. 
The eigenvalue problem for a, and w/, now has the additional boundary condition 

@ , = O  on Sc, (6.21) 

while equation (4.2) for the action remains unchanged. There is no thermal boundary 
layer on Sc at zeroth order. 

The basic flow is governed by the same equations as before, provided we set 
- 
F*=O (6.22) 

in equation (5.3). 
This completes our theoretical investigation of bubble oscillations and we now pass 

on to a few examples of such problems which, although they do not use the full force 
of the preceding theory, are nevertheless best seen in the light of the above formulation. 

7. Examples of bubble oscillations 
The calculations involved in examples ( d ) ,  (f) and (9)  are somewhat complicated 

and the interested reader will find them in appendix B. 
(a) The first, and simplest, case we consider is that of a spherical gas bubble in an 

infinite liquid which is at  rest at infinity. This problem has often been studied before 
and we include it here as a simple illustration. 

Let the non-dimensionalized radius of the bubble be R ;  then the eigenvalue problem 
for the determination of the frequency of oscillation is trivial and leads to 

3Y = - 
R2 

(which is the natural frequency of oscillation given by linear theory neglecting surface- 
tension effects) and 

where r is the distance from the bubble's centre. 
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The amplitude equation is 

leading to exponential decay of the action (which in this case is proportional to the 
amplitude of oscillation because there is no basic flow) under the effects of thermal 
conduction and radiation. The damping constant implicit in equation (7.3) is just the 
result of Pfriem for nearly adiabatic oscillations of large gas bubbles (see Devin 1959; 
Prosperetti 1977). 

( b )  A more interesting case is to consider a spherical bubble to which gas is supplied - - 

a t  constant rate M from a source a t  its centre when 
supply is cut off at  t, = 0. The basic flow just before t 

- M 
$0 = --G, 
- while for t > 0 
$h0 = 0. 

Thus continuity of $,, about t = 0 gives 

where we have taken r(0) = 0. Continuity ofp, yields 

so that 
9 ( iA(0))  = 0, 

A ( O ) = - H  - , 
(l;$ 

-To c t, < 0 and to  which the 
= 0 is given by 

(7.4) 

(7.5) 

and then the action (or in this case fAl as well) decays according to (7.3). 
It will be noted that in this case the entire basic motion for t < 0 is converted into 

oscillations for t > 0. Despite the gross approximation of this example it may well 
model production of a single bubble from a gas supply. 

( c )  Consider next a hemispherical bubble, attached to an infinite plane. The eigen- 
value problem for the oscillations is effectively the same as for the spherical bubble - 
the eigenfrequency is given by (7. 1), while 

1 a=- 
(8nR)b ’ 

The amplitude equation is 

(7.9) 

(7.10) 

ao that the decay rate due to thermal damping is 8 times that for the spherical bubble 
of the same radius, while the decay rate due to radiative damping is one-half of that 
for the corresponding spherical bubble. The difference in the thermal damping arises 
because we have adopted a constant-temperature boundary condition on the solid 
plane, rather than a zero-heat-flux condition there. 

( d )  The normal modes for two spherical bubbles in an infinite liquid can be deter- 
mined by separation of Laplace’s equation in bispherical co-ordinates, to obtain the 
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FIGURE 1. Variation of the functions G , ( d / R ) .  

matrix A,. I n  this case the assumed bubble geometry is not an equilibrium state for 
the basic motion because of the influence of the bubble oscillations on the basic flow. 
However, if the oscillations are small then the distortion of the bubble shapes from 
spherical will be negligible. We give the results here for the special case when the two 
bubbles have the same radius R and there is a distance 2d between their centres. 

In  this case one of the modes of pulsation is symmetric about the plane of symmetry 
of the bubbles while the other is antisymmetric about the same plane; that  is is 
symmetric (respectively antisymmetric). The frequency of vibration is given by 

where 
A=%+(; - I ) ,  d ?? 

(7.11) 

(7.12) 

and the choice of signs in (7.11) is dictated by the parity of the mode considered: the 
+ sign for the symmetric mode and the - sign for the antisymmetric one. Thus 
the antisymmetric mode always has a higher frequency than the symmetric one. 
The amplitude equation takes the form 

(7 .13)  

so that the thermal decay rate for the antisymmetric mode is larger than for the sym- 
metric mode; the radiative decay rate for the'antisymmetric mode is zero to this order. 

Equation (7.11) can be written in the form 

(7 .14)  

and the functions G, are displayed graphically in figure 1. The function G-(d/R) has 
a logarithmic infinity as d / R +  1, while G+(1) = (31n 2)+.  

(e) The symmetric solution to the above problem also describes the case of a 
spherical bubble, radius R, whose centre is a distance d from a rigid plane (cf. the 
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method of images in electrostatics) - the frequency and decay rate are found to be 
identical (the problem for &,is easily solved in this case). Similarly, the antisymmetric 
solution for two spherical bubbles of the same radius describes the case of a spherical 
bubble, radius R, centred at  a distance d from a horizontal, free surface. 

A similar procedure to the classification of the modes into symmetric and anti- 
symmetric in the case of two bubbles with the same radius can be carried out whenever 
the bubble geometry shows symmetry. More precisely, the symmetry group for the 
geometry induces partitioning of the modes according to representation theory (see 
Tinkham 1964). 

(f) Another case of interest is that of an ellipsoidal bubble having semi-axes 
b < c < d, for which separation of Laplace’s equation in ellipsoidal co-ordinates yields 

(7.15) 

~, 
where 0 < x < in is defined by 

(7.16) 
b 

cosx = - d’ 

and F(xlm) is the elliptical integral of the first kind (Abramowitz & Stegun 1964, 
chap. 17). The equation for the action is determined as before; it  involves the area of 
the ellipsoid, which is also expressible in terms of elliptic integrals. 

(9)  The frequency of oscillation of a spherical bubble of volume Y attached to an 
infinite solid plane at arbitrary contact angle 0, can be obtained using separation of 
Laplace’s equation in toroidal co-ordinates. Note that the contact angle is here defined 
so that 8, = 0 corresponds to the bubble just touching t’he plane, while 0, = 471 
corresponds to a hemispherical bubble. We find that 

(7.17) 

with H(8,) as shown in figure 2. The function H has an algebraic infinity at 8, = n, 
but varies remarkably little over most of the range between BC = 0 and 8, = n. The 
amplitude equation is now easily obtained. 
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(h)  Next consider excitation of a spherical bubble of radius R by a source of 
frequency w at a distance d away from its centre. The problem satisfied by $o consists 
of equation (3.16) with 

v2+o = 0, (7.18) 

Be-iwt 
$o - g e ( T )  as D + O ,  (7.19) 

where D is the distance from t,he source and B measures the source strength. 
We set 

to obtain 
go = .B?'(cD(x) e-smt] (7.20) 

v2CP = 0, (7.21) 

as D+O, (7.22) 
B 

CPN- 
D 

(7.23) 

This problem has the electrostatic analogue of a point charge and a conducting sphere, 
which is soluble by the method of images; we find that 

(7.24) 

where wr is the resonance frequency of the bubble as given by equation (7.1). The 
behaviour of CP at large distances is given by 

(7.25) 

corresponding to an effective source of strength 

Thus the bubble increases the effect of the source for frequencies less than 
w,( 1 - R/2d)-* and decreases its effect at  large distances for frequencies higher than 
this. The effective source strength is zero for w = w r (  1 - R/d)-*.  

The singularity which occurs in the solution a t  resonance will be removed by 
damping, of course; formally we would suppose that w - w r  = O ( E ) ,  B = O(s )  (to 
maintain the response of O(1)) and then derive an amplitude equation for A(t,)  in 

q50 = W {A(t , )  @(x) e-+}, (7.26) 

as in $ 5  3 and 4 (Nayfeh & Mook 1979). The procedure is complicated by the O ( E )  shift 
in resonance frequency, corresponding to variation of T (defined in (4.26)), which we 
have already noted. We do not give the details here. 

Returning to the problem of a spherical bubble and a rigid plane, it may seem 
somewhat paradoxical that, as d / R  -+ co, the radiative decay rate approaches twice 
the value which it would have if the bubble were in an infinite liquid. This results 
because we have implicitly assumed that d is of O( 1); the results for d of the order of 
the wavelength will now be derived. 
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I n  this case, w and Q, are given by (7.1) and (7.2), the rigid plane now being in the 
outer (radiation) region. If  P is the distance, in terms of %, from the bubble, while P,, 
is the distance from the reflected image of the bubble in the plane, then 

so that matching vields the relation 
V d  

(7.27) 

(7.28) 

as r +. co. Following the same arguments as before, we arrive a t  the equation for the 
action 

(7.29) 

where it is seen that the radiative decay rate is that  for a bubble without a rigid surface, 
multiplied by the factor 1 +sin (wKd)/wKd, which starts off a t  the value 2 when d is 
small compared to the wavelength and oscillates about the value 1 ,  which is its limit 
as Kd +. 00. Thus, as expected, the radiative decay rate approaches its value without a 
plate, but i t  does so much more slowly than, say, the frequency of oscillation of the 
bubble. 

The case of a spherical bubble and a horizontal free surface is similar; the factor 
1 +sin (wKd)/wKd is changed to 1 - sin (wKd)/wKd, so that the radiative decay rate 
is zero when d is small compared to the wavelength and tends to its value without the 
free surface in an oscillatory manner as l i d  +. 00. 

Similar results for the radiative decay rate are expected whenever the bubbles are 
within a few wavelengths of some non-compact object. 

8. Conclusion 
We have provided a method for determining the normal frequencies and modes of a 

collection of gas bubbles in a liquid in the presence of buoyancy, surface tension and 
solid boundaries. By passing to the next order we have also found the equation 
governing the decay of action for each mode. 

The basic flow, which determines the geometry in which the bubble pulsations occur, 
is described by a certain incompressible velocity potential $,, which satisfies boundary 
conditions on the zeroth-order bubble surfaces Si - these surfaces being convected by 
the basic flow. In  general, the presence of the oscillations affects the basic motion, and 
analytical solutions for the basic flow are not possible. Numerical solution of the 
basic-flow equations is, however, quite feasible and more efficient than solution of the 
complete equations because much computing time would be spent following the 
detailed, rapid bubble oscillations, whereas the present approach effectively averages 
over these rapid variations. 

It is possible to introduce a variety of other components into the model, e.g. elastic 
plates could result in damping of the bubble pulsations through the generation of 
waves in the plate. 

This work was supported by the Office of Naval Research under Grant NOOOl4-77- 
G-0072 and by a grant from the Science Research Council. 
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Appendix A 
Going to  the next order we find that 

s au$ 
VPi = -;at,) 

and so 
s a$$ 

pi = - -- + Ff( t ) ,  
6 ato 

FJl = Fj(tl), 

We will determine Pi by using the integral relation (2.21). 
To do this, note that 

Iv jp j  dv = ( v& + Ev:')pg + EFj vi + O ( € ) ,  

which we differentiate with respect to t ,  giving 

obtained from (2.6) and (2.16), to estimate 

The right-hand side of (A 7)  can in turn be written 

so that (A 7) ,  (A 9) and (A 10) give 

F L M  113 
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which is the required equation for pj. 
At the next order, we have in the liquid 

V2$, = 0, 

--, (A13) 

so that 

pl= -V$o .V4,- 3 (lV&l2- JV$,)2) - 

The condition (2.19) becomes 

so that 

At order e, equation (2.15) yields the results 

(A 171, (A 18) -+vgo.Vf; 8fli = 0, S + V $ i 0 . V f d =  0. 
at, at0 

Next, combining (A 4), (A ll),  (A 14), (A 16), (A 17) and (A 18) we obtain 

w a@,a@, + A, A,* (wI1 - w,,) &VQt,. V@,, -2 - - w, an an 

Here, the double sum corresponds to the production of sum and difference frequencies 
by nonlinear effects. To avoid secular terms in $il, we assume a solution of the form 
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Substituting this form into equation (A 19) and assuming that conditions (i) and (ii) 
stated in $4  are satisfied we find that 

( Y - l ) J b i w  g A a' - -J!@iA,  so2 . +-- 
y" v: p p p p  E 

'fi.'@, on E:. ( ~ 2 1 )  
iq + $ ~ , a ;  -fl U; A,--- 
VO lW2 

while 

Solubility of the problem consisting of (A 21)-(A 23) requires that the right-hand 
side of (A 21) satisfy an orthogonality condition which, as usual in such problems, 
provides the amplitude equation. If we denote the right-hand side of (A 21) by Fi 
then this condition is 

Substituting the expression for F i  into (A 24), using (3.22) and the normalization 
condition for we obtain the amplitude equation 

which describes the development of A,' with the slow time scale t,. 

Appendix B 
I n  this appendix we give brief outlines of the calculations involved in examples 

(d) ,  (f) and (9)  of 5 7. The symbols used for all variables, apart from y, in this appendix 
will be independent of those used in the main text unless otherwise stated. 

(d )  For the case of two spherical bubbles, both of radius R a t  a distance 2d apart 
we use bispherical co-ordinates p, q, q5 as given on p. 1298, vol. 2 of Morse & Feshbach 
(1953). The bubbles are situated on p = po, -po, where cosh,uo = d/R, p0 > 0. 

TWO solutions of Laplace's equation are given by 

Both satisfy @* = 1 on p = po, while @+ is symmetric and 0- is anti-symmetric 
about p = 0. It can then be shown that 

17-2 
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where the surface integral is taken over the sphere p = po and the normal is taken into 
the bubble. From equation (3.22) we have 

giving the frequency w of the normal modes. Combining (B 2) and (B 3) we obtain 

which gives equation (7 .11)  via the definition of po. 
(f) For the problem of the ellipsoidal bubble, having semi-axes a1 < a2 < ct3, we 

define a = (a;-@, b = (at- a:)), c = a3. It is shown on p, 1308, vol. 2 of Morse & 
Feshbach (1953) that, in the electrostatic analogue of the oscillation problem, the 
capacitance of the ellipsoid is given by 

Y a c‘= 

F(X/;)  ’ 

where x and F(Xlm) are as in $7.  The frequency of the bubble is therefore given by 

which corresponds to equation (7 .15) .  
(9) For a spherical bubble of volume V ,  attached to a solid plane a t  contact angle 

6,) we use toroidal co-ordinates, p, 7, 4, as defined on p. 1301, vol. 2 of Morse & 
Feshbach (1953). The plane corresponds to 7 = 0, while the bubble is given by 7 = 6,. 
A solution of Laplace’s equation is 

where h = 7r/OC; @ = 1 on 7 = 6,) a@/a7 = 0 on 7 = 0 and @ -+ 0 as r ,  the distance 
from the bubble, becomes large (i.e. p, 7 -+ 0). 

For large r ,  we expect the solution CD to have the form 

and then we know that 

/$dS = 27rq, 

where the integral is taken over the bubble surface and the normal is directed into the 
bubble. The frequency of oscillation is therefore given by 

The problem is now to calculate q.  
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Using formula (5 .3 .29)  of Morse & Feshbach (1953) we obtain the following 
integral representation : 

( 1  - t 2 p A - l )  at 

(B 11) 
@ =  I-- 

where q = 0 and 5 = coshp. As T-+CO, i.e. p u 0 ,  the integral becomes singular, but 
by using asymptotic matching methods we find that 

where 

1” [n(3 cos 8, - cos3 8, + 2 )  
3 v  

u = sine, 

is the radius of the circle of contact of the bubble with the pIane. The derivation of 
equation (B 12) requires the use of three regions in x = t(l - t ) ,  given by x = O ( l ) ,  
x = O ( ( 6 -  1 ) i )  and x = O(6- 1). Finally, using (B 10) and (B 12) we have 

Figure 2 was obtained by numerical evaluation of the integral appearing in ( B  14);  
some care is needed in this calculation near the endpoints x = 0, 1 and when h is large. 
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